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Abstract

In this paper, we consider the plane problem of a frictionless receding contact between an elastic functionally graded
layer and a homogeneous half-space, when the two bodies are pressed together. The graded layer is modeled as a non-
homogeneous medium with an isotropic stress—strain law and over a certain segment of its top surface is subjected to
normal tractions while the rest of this surface is free of tractions. Since the contact between the two bodies is assumed to
be frictionless, then only compressive normal tractions can be transmitted in the contact area. Using integral trans-
forms, the plane elasticity equations are converted analytically into a singular integral equation in which the unknowns
are the contact pressure and the receding contact half-length. The global equilibrium condition of the layer is supple-
mented to solve the problem. The singular integral equation is solved numerically using Chebychev polynomials and an
iterative scheme is employed to obtain the correct receding contact half-length that satisfies the global equilibrium con-
dition. The main objective of the paper is to study the effect of the material nonhomogeneity parameter and the thick-
ness of the graded layer on the contact pressure and on the length of the receding contact.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Problems involving the contact of two separate bodies pressed against each other has been widely stud-
ied in the literature. In these problems, the length of the contact zone and the contact pressure which is zero
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at the ends of the contact segment are the primary unknowns of the problem. If the contact zone shrinks as
the bodies are deformed, then such contact is referred to as receding contact (Dundurs, 1975). In linear elas-
tostatics problems in which the boundary conditions are satisfied on the original geometry, a receding con-
tact is one where the contact surface in the loaded configuration is contained within the initial contact
surface (Johnson, 1985).

The receding contact problem has been studied during the past three decades by several researchers both
numerically and analytically. The latest numerical studies on this type of contact problems were either
based on the finite element method (e.g., Jing and Liao, 1990; Satish Kumar et al., 1996) or on the bound-
ary element method (Anderson, 1982; Garrido et al., 1991; Garrido and Lorenzana, 1998; Parts et al., 1992,
1995).

Among the analytical studies involving receding contact are those of Stippes et al. (1962) dealing with
inclusions that can separate from the matrix and the works by Weitsman (1969) and Pu and Hussain
(1970) who considered a layer pressed against a substrate. The results for various inclusions and more com-
plete lists of references prior to 1970 on the receding contact problem can be found in the papers by Wilson
and Goree (1967), Noble and Hussain (1967, 1969), Hussain et al. (1968) and Margetson and Morland
(1970).

Keer et al. (1972) investigated the smooth receding contact problem between an elastic layer and a half-
space formulated under the assumption of plane stress, plane strain and axisymmetric conditions. Gladwell
(1976) solved the same problem by treating the layer as a simple beam in bending. Ratwani and Erdogan
(1973) considered the plane smooth contact problem for an elastic layer lying on an elastic half-space with a
compressive load applied to the layer through a frictionless rigid stamp. Civelek and Erdogan (1974) inves-
tigated the general axisymmetric double frictionless contact problem for an elastic layer pressed against a
half-space by an elastic stamp under the assumptions that the three materials have different elastic
properties.

Gecit (1986) studied the frictionless contact problem of a semi-infinite cylinder compressed against a
half-space. Nowell and Hills (1988) considered the plane elastic contact problem between a thin strip
and two symmetric rollers under the assumption of frictional sliding, frictionless and frictional indentation.
Birinci and Erdol (1999) solved the frictionless contact problem between a flat-ended or rounded rigid
stamp and two elastic layers. Birinci and Erdol (1999) also studied the continuous and discontinuous con-
tact problem of a layered composite made of two elastic layers subject to a loaded rigid rectangular stamp.
Comez et al. (2004) investigated the plane double receding frictionless contact problem for a loaded rigid
stamp in contact with two different elastic layers.

The materials research community has recently been exploring the possibility of using new concepts in
coating or layer design, such as functionally graded materials (FGMs), as an alternative to the conventional
homogeneous coatings or layers. These can be two-phase inhomogeneous particulate composites synthe-
sized in such a way that the volume fractions of the constituent materials, such as ceramic and metal, vary
continuously along a spatial direction to give a predetermined composition profile resulting in a relatively
smooth variation of the mechanical properties. FGMs appear to promise attractive applications in a wide
variety of thermal shielding problems, such as high temperature chambers, furnace liners, turbines, micro-
electronics and space structures, as well as in various contact mechanics applications, such as gears and
cams (Holt et al., 1992).

In this paper, we consider the plane problem of a frictionless receding contact between an elastic func-
tionally graded layer and a homogeneous half-space when the two bodies are pressed together. The layer is
subjected over a certain segment of its top surface to normal tractions while the rest of this surface is free of
tractions. The mixed-boundary value problem is solved analytically using the singular integral equation
method. The formulation and the solution of the contact problems are described, respectively, in Sections
2 and 3. The numerical solution of the resulting singular integral equation is summarized in Section 4.
Finally, numerical results are discussed in Section 5.
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2. Formulation of the contact problem

As shown in Fig. 1, the problem under consideration consists of an infinitely long functionally graded
layer of thickness / in contact with a homogeneous semi-infinite medium. The graded layer and the half-
space occupy, respectively, the domains 0 < y < /2 and y < 0. For the graded layer, the material is modeled
as a nonhomogeneous isotropic material with a gradient oriented along the y-direction. The Poisson’s ratio
v is assumed to be a constant and the shear modulus y; depends on the y-coordinate only and is modeled by
an exponential function expressed by

w(y) = poexp(fy), 0<y<h, (1)

where g is the shear modulus in the homogeneous medium and f is the nonhomogeneity parameter con-
trolling the variation of the shear modulus in the graded medium.

The graded medium is subjected to normal tractions p(x) distributed over the segment |x| < a of the top
surface of the layer, while the rest of this surface is free of tractions. For simplicity, only the case when the
applied normal tractions p(x) are symmetric about the center of the loaded segment is considered. As the
two bodies deform, contact between the graded layer and the homogeneous half-space is maintained over
the segment |x| < ¢, while separation takes place outside this interval, where the contact is assumed friction-
less. The contact normal tractions within this segment, denoted ¢(x), and the variable ¢, called the receding
contact half-length, are the main unknowns of this problem.

We denote by u and v, respectively, the x and y components of the displacement field and by o, 7,, and
o, the components of the stress field in the same coordinate system. The corresponding components of the
strain field are denoted e&,,, &,, and &,,.

The receding contact problem may be solved by considering separately the graded layer and the homo-
geneous half-space. The equations of the plane problem in both domains are the equilibrium equations with
body forces neglected, the strain-displacement relationships and the linear elastic stress—strain law which
are, respectively, given by

Iﬁfﬂ b
P

8 FGM Layer |‘_

Homogeneous
Half-Space

Fig. 1. Geometry and loading of the receding contact problem.
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agx aaiyx—vzo, %*%W:O’ (2a,b)

LU —C %:l(%jL%)’ (3a-c)
Ox dy 2\0y Ox

O = (L K+ B = R)ay), (=0,1), (42.b)

Oy =2 [B = o+ (1 4+ K)ay], (7=0,1), (4c,d)

0y =2ty (=0,1), (4e,f)

where i« =3 — 4v for plane strain and k = (3 — v)/(1 + v) for generalized plane stress and uo and u; are de-
fined in Eq. (1).

To solve the receding contact problem between the graded layer and the homogeneous half-space, we
derive the following two-dimensional Navier’s equations obtained by combining Eqgs. (1)—(4):

Qu Qu % d d

(k+ 1 )a2+(K—1)a—y2+2m+ﬁ(lc—1)a—;+ﬁ(x—1)a—z=0, 0<y<h (5a)
(K—1)21%(K+1)%+2%+/3(3—K)%+/3(K+1)%:0, 0<y<h (5b)
(K+1)222‘ (K—l)giy‘z%zaax—;“yza y <0, (5¢)
(K—l)%—‘r( +1)gz’;+2%:o, ¥ <0. (5d)

For the graded layer, the plane elasticity Eqgs. (5a,b) are subject to the following boundary conditions:

Oy(x,h) = —p(x)H(a — |x]), ou(x,h) =0, |x] <+oo, (6.7)
ny(xv 0+) = —q(x)H(c - |x|)7 ny(xv 0+) =0, |x| < 400, (87 9)
where H is the Heavyside function.

For the homogeneous medium, the plane elasticity Egs. (5c,d) are subject to the following boundary
conditions:

0,(x,07) = —q(x)H(c — |x]), 04(x,07) =0, |x| <+oc. (10,11)
In addition, we assume that in both domains the stress field vanishes at infinity. In particular, we have
7y (%,3) =0, 0y(x,y) =0, x>+’ — oo (12,13)

By writing the global equilibrium of the FGM layer and by taking into account the fact that stresses
vanish at infinity (i.e., Egs. (12) and (13)), we deduce the following expression:

/qu(t) dr = /:ap(t) dr. (14)

Since the FGM layer and the homogeneous base are in smooth contact, then the vertical component of the
displacement field across the contact segment is continuous:

v(x,0") = v(x,07), |x| <e. (15)
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The above condition can be differentiated with respect to x which ensures continuity of the displacement
along y and eliminates rigid-body displacements:

%[v(x, 0") —v(x,0)] =0, x| <ec. (16)

3. Solution of the contact problem

The plane elasticity Egs. (5a,b) and (5c,d) are solved separately using standard Fourier transforms with
respect to the x-coordinate to yield the displacement field in both domains.
For the graded layer, the resulting expressions of the displacement field are given by

+oo +oo
u(x,y) = / B0 y)e " dl, bx,y) = / By dl,  0<y<h (17a,b)

where #(4,y) and ©(4,y) are, respectively, the Fourier transforms of u(x,y) and v(x,y) which can be ex-
pressed as follows:

ZC" e" 13 ivy) =

N

Cr(W)si(A)e™, 0<y < h. (18a,b)

k=1

In the above equations, the unknown functions Ci(1) (k = 1,2, 3, 4) are determined from the boundary con-
ditions and my, . . .,my4 are the four complex roots of the characteristic polynomial associated with the plane
elasticity Eq. (5a,b), which may be written as
3—«x
2
=0. 19
1+ K> (19)

The roots of the above equation, denoted m, m,, m3 and my, are two by two complex conjugates where
ms = m; and my = m,. The roots m; and m, are given by
) (20a,b)

m1:%<_ﬁ+\/ﬁ2+4/12+4iiﬁ i;z), mzzé( p— \/ + 4% 4 4i)p
, (k=1,...,4). (21)

m* + 2Pm* + (B — 221 )m* — 2B *m + (z“

In Eq. (18b), the known functions si(4)(k = 1,2,3,4) may be expressed as follows:
(k. — Dm + (i — Vymy — 27 (x + 1)
iA2my + p(k — 1))

Substituting (17) into (3) and then the resulting expressions into (4) yields the stress field in the graded layer
which are of interest and which may be written as follows:

Sk(;») =

+00

+00
Oy(x,y) = / 6W(i,y)e’m di, oy(x,y) = / &xy(/l,y)e’ix;' di, 0<y<h, (22a,b)

o0 o0

where §,,(4,y) and &,,(4,y) are, respectively, the Fourier transforms of a,,(x,y) and a,,(x,y) which are
given by

4
T(4,y) = 4 0) Zpkemkyck(i)a G (4,) quemuck 0<y<h, (23a,b)

K—1 “—

in which the known functions p(/) and ¢ (2)(k = 1,2,3,4) are given by
@A) =my — i)y, p(A) =1 +x)sim — ()3 —x), (k=1,...,4). (24a,b)
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The plane elasticity Egs. (5¢,d) are solved in a similar manner to yield the expressions of the displacement in
the homogeneous medium (y < 0) which have the same form as those for the FGM layer (Egs. (17a,b)) but
different expressions for the inverse Fourier transforms:

(2, y) = ity (2, 9)e™ + i (2, y)e™™ B2, y) = b1 (4, y)e™ + 5, (2, y)e ™,y <0, (25a,b)
where the functions i (4,y), #2(4,v), 91(4,y) and 0,(4,y) are given by

(4, ) = Cs(4) + Cs(A)y,  wa(2,y) = C(4) + Cs(A)y, (26a,b)

01(4,y) = Cs(A)ss + Cs(A)(ssy +56),  02(4,y) = =C7(A)ss + Cs(A)(=ssy + 56), (26¢,d)
in which the known functions s5(4) and s¢(4) are given by

ss=Tap == (27a,b)

The expressions of the stress field in the homogeneous medium which are of interest may be written as
follows:

+o0

+o0o
U,W(x7y) = / &}y()“’y>e;u)ld;“a O-xy(xvy) = / 6xy</1,y)eiix;hd}“7 y < 07 (283, b)

o0 o0

where 6,,(Z,y) and 6,,(4, y) are, respectively, the Fourier transforms of 4,, (x,y) and a,,(x, y) which may be
written, after applying the regularity conditions (12) and (13), as follows:

~ H aly
G(2.7) = == (psCs(2) + (psy +pe) Co(A)e™, y <0, (29a)
Go(2,7) = 1o(g5Cs(2) + (g5y + ¢5)Cs(1))e™, vy <0, (29b)
in which the known functions pi(2) and g (1)(k =5,6,7,8) are given by
. il .
po= N1, p=(-W) T =217 g=1-x (30a-d)

Applying the boundary conditions (6)—(9) to the expressions of the stress field obtained for the FGM
layer (22a,b) and using inverse Fourier transforms yields a linear algebraic system of equations in which
the unknown functions Cy(1)(k = 1,2,3,4) are expressed in terms of the Fourier transforms of the known
tractions p and the unknown contact stress ¢, as follows:

pie™" pemt pemt o pent Ci(4) —p(4)
qlem'h ‘Izemzh %e’n}h ‘I4em4h Ca(4) _ 0 (31)
P P P Ps Cs(4) —q(4)
il 9 q3 94 Ca(2) 0
where p(4) and g(A) are given by
. Kk—1 a - < K—1 7 ixA
P =g [ e g =5 [ ge s (32a,b)

Eq. (31) is inverted analytically leading to the expressions of C; (4)(k = 1,2, 3,4) in terms of p(4) and (1)
as follows:

Dy Dy

G = (=) ) + )| =1, 33)

where D is the determinant and Dy (j = 1,3; k= 1,2, 3,4) is the subdeterminant (corresponding to the elim-
ination of the jth row and kth column) of the coefficient matrix in the system of Eq. (31).
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Applying the regularity conditions (12) and (13) to the expressions of the stress field obtained for
the homogeneous medium (27a,b) yields Cy(1) = Cg(4) =0. Furthermore, applying the boundary
conditions (10) and (11) to this stress field produces the following expressions of Cs(1) and Cg(4) in terms
of g(A):

bl _q6 ~ QS ~ /9
Cs(1) =——q(4), Ce¢(4) =————g(4). 34a,b
() Psq6 — Pe4s *) o) Psq6 — Pe4s ) ( )

Applying the remaining boundary condition (16) and using (31) and (32) yields the following singular
integral equation, in which the unknowns are the contact pressure ¢ and the receding contact half-length ¢

[ Rengoa=er [Cporwoan w<e (35)

where f{x,?) is a known function and K (x,¢) is the kernel of the integral equation whose expressions are
given by

flx,f) = /0 " AG) sin[A(t — %)) i, R(x6) = lim, o /0 " N, 2) sinfA(t — x)] 41, (36a,b)

in which A(4) and N(y, ) are given in Appendix A.

It can be easily verified that N(y, ) in Eq. (36b) is bounded as A goes to zero, but diverges as A goes to
infinity. The dominant part of the kernel may be separated by taking the asymptotic expansion of N(y, 1) as
A goes to infinity. Using MAPLE, the asymptotic expansion of N(y, 4) is given by the following expression:

by b

N>¥(y,2) = (bo+7+

bg\
3+---+78)eﬂ~J, (37)
yi yi

where the coefficients b, to bg are given in Appendix A.
The Cauchy singularity can be extracted from the kernel given by Eq. (36b) as follows:

+00 +00
K(x,t) = lim),_,o/ boe™ sin[A(t — x)]d4 + limy_>o/ [N(y, 2) — boe™] sin[i(t — x)]dA, (38)
0 0
which simplifies to
— by +eo , . ,
K1) = + / [B(2) — bo] sin [A(t — x)] d, (39)
(t=x) Jo

where B(1) = N(0, 1) and whose expression is given in Appendix A.
Substituting (39) into (35) and dividing the resulting equation by b, yields the following singular integral
equation:

+c 1 1 +a
[ (20 Jamar= e [ poraan xl<e (40)
—c - 0 —a
in which k(x,?) is a Fredholm kernel that depends on the nonhomogeneity parameter 5 and whose expres-
sion is given by
+00 1
k(. 1) = / (b—B(/l) - 1) sinfA(t — x)] d, (41)
0 0
where the evaluation of the above improper integral is shown in Appendix A.

In order to solve Eq. (40) for the contact pressure and the receding contact half-length, the global equi-
librium condition of the graded layer (i.e., Eq. (14)) has to be supplemented.
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4. Numerical solution of the singular integral equation

We apply the following normalizations and definitions to the singular integral Eq. (40) and to the addi-
tional condition (14):

»q(r) = 0(s), (42a-c)
k(x,t) =K(r,s), f(x,t)=F(r,s), p) =P(s). (42d-f)
Egs. (40) and (14) become

a

/H (S i - eK(r, S)) 0(s)ds = e /_+Z cP(s)F(r,s)ds, |r] <1, (43)

by ‘

/ O(s dsf/ vP(s)ds. (44)

It was shown in Erdogan and Gupta (1972) that the singular integral Eq. (43) has an index —1 because of
the absence of singularities at the end points +1. Its solution may be expressed as Q(s) = w(s)¢p(s) where
w(s) = V1 —s? is the weight function associated with the Chebyshev polynomials of the second kind
U,(s) = sin((n + 1) arccos(s))/v1 —s?> and ¢(s) is a continuous and bounded function in the interval
[—1, 1] which may be expressed as a truncated series of Chebyshev polynomial of the second kind. There-
fore, the solution of (43) may be expressed as

O(s) =Vv1 —szzanUn(s), |s| < 1. (45)

n=0

The above solution is substituted in (43) resulting in the following equation which is linear in terms of the
(n+ 1) unknowns ay, . . ., a, but nonlinear in terms of last unknown being the receding contact half-length
¢

N
Z —nT 1 (r an+z Jeay = h(r), |r| <1, (46)

where T, (r) = cos((n + 1) arccos(r)) is the Chebyshev polynomial of the first kind, /(r) and g(r), which
are nonlinear functions of ¢, are both given by

h(r) = % s [ :cP(s)F(r,s)ds, g(r) = [ VIRV s)ds (47a,b)

Eq. (46) may be solved by selecting a set of N+ 1 points using the collocation method proposed by
Erdogan and Gupta (1972), as follows:

2j—1
rcos<§]\?+1> (G=1,...,N+1), (48)
Using the collocation points given by Eq. (48) to Eq. (46) yields a system of (n+ 1) equations with
(n + 2) unknowns, namely a, .. .,ay and ¢ which may be expressed as:
N
Z —aT 41 (7)) a,,—|—z g(rj))ea, =h(r;), (G=1,...,N+1). (49)

n=0
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In order to solve for the (n + 2) unknowns, the system of equations given by (49) are supplemented by
the global equilibrium condition (44) which after substituting the form of the solution given by (45)
becomes:

L mza,, , ds—/+ZP(s)ds. (50)

a
c

Since the system of equations given by (49) and (50) is nonlinear in terms of the variable ¢, an iterative pro-
cedure is used to solve for the unknowns. An initial estimate of the variable ¢ is assumed, then the system of
Eqgs. (49) is solved for the (n + 1) unknowns ay, . . .,ay. Eq. (50) is then used to verify if the global equilib-
rium of the graded layer is satisfied. Since the loading applied to the graded layer is known, then the right-
hand term of (50) is always constant and the left-hand term of this equation varies from one iteration to
another. Furthermore, based on the physics of the problem, if the right-hand term of (50) is larger in abso-
lute value than the left-hand term, then the value of the variable c¢ is increased or vice versa. An additional
test of convergence of the variable ¢ is also made by computing the relative error between the values of ¢
obtained from two successive iterations.

5. Results and discussion

The geometry and coordinate system of the considered problem is shown in Fig. 1. We consider two
cases of FGM materials, a compliant graded layer with i <0 and stiff graded layer with 4 > 0. The load-
ing applied on the graded layer, p(f), can be either a concentrated force with a/h = 0.01 or a unlformly dis-
tributed loading with different values of a/h(a/h = 1.0,2.0,4.0), such that the resultant force |~ +:/: t)dt is
always equal to —1.

Table 1 shows the number of iterations performed in order to reach the solution of the receding contact
problem for the case of a concentrated load for different values of the strffness parameter, f3h
(=0.001, —1,+1). Since the applied load is independent of A, then its resultant f +a/ t)dt is also indepen-
dent of fh and is equal to —1. Columns (2 ) (5) of Table 1 correspond, respectlvely, to the iteration number,
the resultant of the contact stress f I q t)dt, the normalized receding contact length ¢/h and the relative
error of the normalized receding contact length between two successive iterations, for the case of a homo-
geneous layer (i.e., i = 0.001). The same quantities are tabulated in columns (6)—(9) for the case of a com-
pliant graded layer (ph = —1) and in columns (10)—(13) for the case of a stiff graded layer (ﬁh =+1). The
iterative solution is performed unt11 (i) the relative error between the resultant contact stress f o/ q (t)dt and
the resultant applied load f / t) dt becomes less than a tolerance of 10~ ® which means verification of the
global equilibrium of the graded layer (Eq. (50)); and (ii) the relative error of the normalized receding con-
tact length between two successive iterations becomes less than 0.4%. As shown in Table 1, few iterations
were required to solve the receding contact problem for the case of a homogeneous layer (i.e., f2 = 0.001)
and to show the fast convergence of the receding contact length. The corresponding normalized receding
contact length is 1.3243 which is approximately the same value reported by Keer et al. (1972) (see Fig. 2
of this reference, case of o =0).

As an additional proof of the solution convergence, Erdogan and Gupta (1972) indicated that the un-
known coefficients a, .. .,ay of the truncated series of the solution Q(s) = V1 — s23__ a,U,(s), given by
Eq. (45), must converge to a very small value as N increases. The results reported in this paper were ob-
tained for N = 10. Table 2 shows the values of the coefficients ay,...,ay for the case where i = —1 ob-
tained for iterations 1, 4 and 7 (i.e., columns 6, 7 and 8 of Table 1). Table 2 clearly indicates that the
coefficients ay, . ..,ay are converging.



Table 1

Solution iteration of the receding contact problem for different values of the stiffness parameter pi for the case of a concentrated load, a/h = 0.01

S5 p(oyde Bh=0.001 ph=—1 Bh= +1
Iteration no. f:/: q(t)dt  c/h E (%)*  Iteration no. /fs/: q()dt  c/h E (%)*  Iteration no. /f:/: q()dt  c/h E (%)*
(2) (3) (4) (5) (6) (7) (8) 9) (10) (11) (12) (13)

-1.0 1 —0.0481347  0.0100 . 1 —0.0774339  0.0100 . 1 —0.0299870  0.0100 e
2 —0.9726017  0.2563 96.10 2 —0.9820959  0.2563 96.10 2 —0.9579621  0.2563 96.10
3 —0.9999675  1.2975 80.25 3 —1.0001099  1.2975 80.25 3 —0.9995316  1.2975 80.25
4 —1.0002957  1.9462 3333 4 —1.0002560  1.7637 2643 4 —1.0002184  1.9462 33.33
5 —0.9999985  1.3228 —47.13 5 —0.9999785  1.1597 —52.08 5 —0.9998836  1.5015 —29.62
6 —1.0000019  1.3257 022 6 —0.9999968  1.1752 132 6 —1.0000050  1.6079 6.62
7 —1.0000002  1.3243 -0.11 7 —0.9999998  1.1778 022 7 —0.9999998  1.6026 -0.33

# Eis the relative error of the receding contact length between two successive iterations given in percentage as follows: E(%) =

iteration number.

(¢/h); = (e/h);_,

(c/h);

x 100 in which i is the
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Table 2
Convergence of the solution coefficients ay, . . ., ay given by Eq. (45) for the case where {i = —1 obtained for iterations 1, 4 and 7 (i.e.,
columns 6, 7 and 8 of Table 1)
Coefficient Iteration no.

1 4 7
a —4.92959801159705 —0.361049353779599 —0.540511414555690
a —3.706837947265695E—04 0.214221243002300 0.165091250112821
a 7.707426909428907E—06 —0.102869936240056 —5.56937154087725E—02
as —6.927363560588361E—08 4.550703611497985E—02 1.540345394723657E—02
ay —2.484711231619304E—06 —1.921238613754444E—02 —4.285582745191018E—03
as 3.590462272732949E—06 7.833850352914508E—03 1.075885334947709E—03
ag —2.259096455700216E—06 —3.121185077901784E—03 —3.287428981549372E—04
a; —1.117207576293463E—07 1.196122864467772E—03 5.708941240064792E—05
ag 2.145955187670967E—06 —4.251373089290544E—04 1.731609295548627E—05
ay —3.870726907698476E—06 1.092087941965897E—04 —5.767047445102213E—05
a 5.425832001806739E—06 1.777047378899843E—06 7.761764153912499E—05
Verification of layer global equilibrium (Eq. (50))
S pe) de ~1.0
I g de ~0.0774339 ~1.0002560 ~0.9999998

35 T T T T T

a/h =0.01 '

251

Receding Contact Length (c/h)
N

0.5
-4

Nonhomogeneity parameter (3h)

Fig. 2. Effect of the stiffness parameter S/ [in uy (y) = woexp(fy)] on the normalized receding contact length for a concentrated load
and for various uniformly distributed loads.

Fig. 2 shows the normalized receding contact length, ¢/h, as a function of the stiffness parameter i for a
concentrated loading and various types of uniformly distributed loads (a/h = 0.01,1.0,2.0,4.0). It can be
seen that for a fixed value of ph, the normalized receding contact length, ¢/h, increases for increasing values
of a/h. Therefore, the contact length corresponding to the applied concentrated force (a/h = 0.01) is smaller
than that associated with the distributed loads. Examination of Fig. 2 indicates also that the contact length,
¢/h, increases for increasing values of the stiffness parameter fh. On the other hand, if the value of f & be-
comes large in the positive sense, then the contact zone becomes large.

To further understand this point, we introduce the following quantity D = fé’ ¥, (y)dy which represents
the flexural rigidity of the graded layer because the layer can be assumed as a beam since its thickness is
negligible compared to its length. Based on Eq. (1), the expression of layer’s flexural rigidity becomes
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D = [ y?1,e” /" dy which indicates that the rigidity is an exponential function of fh. As a result, when fh
becomes large in the positive sense, both the flexural rigidity of the graded layer and the receding contact
length increase. On the other hand, when [ is negative, the FGM layer’s flexural rigidity is reduced leading
to smaller contact zone with the homogeneous medium.

Figs. 3-6 illustrate the effect of the stiffness parameter Sh[inu(y) = poexp(fy)] on the normalized contact
pressure for, respectively, the case of a concentrated load (a/h = 0.01) and the cases of various uniformly
distributed loads (a/h = 1.0,2.0,4.0). From these figures, it can be concluded that for a fixed value of a/h,
increasing the value of 4 in the negative sense results in a reduction of the contact zone in addition to an
increase of the peak of the contact pressure. The opposite effect can be observed when increasing the value
of Bh in the positive sense.

1.2

T T T T T T T
a/h=0.01

2
-h%,, (x,0)/P

Fig. 3. Effect of the stiffness parameter S [iny; (y) = uoexp(fy)] on the normalized contact pressure for the case of a concentrated load,
alh =0.01.

06 T T T T T T T
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03

2
-h%,, (x,0)/P

0.2

-2

Fig. 4. Effect of the stiffness parameter i [in u; () = puoexp(fy)] on the normalized contact pressure for the case of a uniformly
distributed load, a/h = 1.0.



670 S. El-Borgi et al. | International Journal of Solids and Structures 43 (2006) 658—674

0.35 T T T T T

0.3

025

(x,0)/P
o
N
T

yy

© 0151

-h

0.1

005F

Fig. 5. Effect of the stiffness parameter S/ [inu; () = poexp(fy)] on the normalized contact pressure for the case of a uniformly
distributed load, a/h = 2.0.
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Fig. 6. Effect of the stiffness parameter fh [inu; (y) = poexp(fy)] on the normalized contact pressure for the case of a uniformly
distributed load, a/h = 4.0.

6. Conclusion

In this paper, the plane problem of a frictionless receding contact of a functionally graded layer pressed
against a homogeneous half-space was considered. The layer was subjected over a certain segment of its top
surface to normal tractions while the rest of this surface was free of tractions. Using standard Fourier trans-
forms, the plane elasticity equations were converted analytically into a singular integral equation in which
the unknowns are the contact pressure and the receding contact half-length. The global equilibrium condi-
tion of the layer was supplemented to solve the problem. The singular integral equation was solved numer-
ically using Chebychev polynomials and an iterative scheme was employed to obtain the correct receding
contact half-length that satisfies the global equilibrium condition. A detailed parametric study was con-
ducted to investigate the effect of the material nonhomogeneity parameter of the graded layer f4 on the
contact pressure and on the length of the receding contact for different thicknesses of the layer.
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Different conclusions were reached when the graded layer is either compliant (i.e., fh <0) or stiff (i.e.,
ph>0). When fh is negative and its absolute value is increased, an the peak of the contact pressure is in-
creased and the layer’s flexural rigidity is reduced leading to smaller contact zone with the homogeneous
medium. For large negative values of i, the receding contact zone becomes small. On the other hand,
when fh is positive and is increased, the peak of the contact pressure is decreased and the layer’s flexural
rigidity is increased resulting in a larger contact zone.
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Appendix A

A.1. Expressions of quantities appearing in Eq. (36a,b)

A(2) = (22) [Z(-n"%sk 7 (A1)
N(y,2) = (24) l(Z(—l)k%ske’””> + %e’y]. (A.2)

where D is the determinant and Dy (j = 1,3; k= 1,2, 3,4) is the subdeterminant (corresponding to the elim-
ination of the jth row and kth column) of the coefficient matrix in the system of Eqgs. (31).

A.2. Expressions of quantities appearing in Eq. (37)

1+x K+5 56°
3 4 S
b= — B°(5x* — 36K + 572) 7
320k — 1) (k+ 1)
by = — BT (110 — 2% — 1318 + 8k7 + T61° + 481c°)
128(k — D(k + 1)
 BT(—138k* — 2561 — 129%7 + 138 — 117) (A.9-10)
128(k — 1)(k + 1) ’ '
by = B (k12 — 2K — 6K10 + 21 — 25K + 817 + 364K°)
256(k — 1)(k+1)°
N B3(522K5 — 457x* — 1800k — 185412 — 1538k — 1205) | (A11)

256(x — 1)(k +1)°
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A.3. Expressions of quantities appearing in Eq. (39)

o = @) S Bn )  dme. e

A.4. Evaluation of the Fredholm kernel k(x,t) given by Eq. (41)

The Freholm kernel k(x, f) given by Eq. (41) is evaluated by dividing the integral from 0 to 4 and from A
to oo as follows:

k(1) = /0 ’ (blB(;,)— l)sin[i(t—x)]di—&— /A - (blB(i)— l)sin[)y(t—x)]d/l, (A.13)

0 0

where A is an integration cut-off point.
The second integral is further divided by adding and subtracting the asymptotic development of the
function (%B(/l) — 1) (see Delale and Erdogan, 1983). The above equation becomes

k(x, 1) = /0 ’ (biog(;,) - 1) sin [A(t — x)]dA
+/Am{<bi03(;h) - 1) - <blOB(z) - 1)00}5111[ (¢ —x)] dA
+ /A+OC (bloB(/l) - 1)00 sin[A(¢ — x)]d4, (A.14)

which can be rewritten as follows:

k(x, 1) = /0 ! <blB(z) - 1> sin[A(t — x)] dJ

0

+ /A%c { (blOB(X) - 1) — (blﬁbo + bzl{zbo ot bgi/gbo) } sin [A(t — x)]dA

¥ b by by/b by /b
+/A ( [y ooy 2 °> sin [A( — x)] . (A.15)

The first integral can be computed numerically using Gauss—Quadrature technique and the second
integral becomes negligible for sufficiently large values of 4 (see Delale and Erdogan, 1983; Erdogan
and Gupta, 1972). The third integral is computed in closed-form using the following expressions (Chen,
1990):

/ sm[ (¢ —x)] d/ = cos[A(t — x) "ZI: Hl(t )2)‘142(,,2’;_1 2-2) + sin[4(t — x)]

)2n72

silA(r —x)],

(="t =0 (2n—2i—1)! ot (t—x
% ; (21’1 _ 2)!A2n72i + <_1) m

(A.16)
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— dA = cos[A(t — x)] ; n— )

n (_1)i+l(t —x)2<i71)(2n _ 21)' .
, -1
x Zl (2}’1 _ 1)!A2n721+1 + ( )

i=

/ > sin At — )] DT @2 e

(l _ x)anl

(2n—1)!

Cild(z - x)],

(A17)
where 7 is a positive integer (n = 1,2,...), Ci(z) is the cosine integral and si(z) is a function of the sine inte-

gral Si(z) and whose expressions are given by

Y
; , 5 (A.18)

: I “sint .
in which Si(z) = / % dr and yo = 0.57721566490 is the Euler’s constant.
0

+00 2| —
Ci(z) = —/ %St dt =7y +In|z| +/ cost=1 dr, si(z) = Si(z) — sign(z)
z 0
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